A Geometric Study of the Dispersionless Boussinesq Type Equation

نویسندگان

  • Paul Kersten
  • Alexander Verbovetsky
چکیده

We discuss the dispersionless Boussinesq type equation, which is equivalent to the Benney–Lax equation, being a system of equations of hydrodynamical type. This equation was discussed in [4]. The results include: A description of local and nonlocal Hamiltonian and symplectic structures, hierarchies of symmetries, hierarchies of conservation laws, recursion operators for symmetries and generating functions of conservation laws (cosymmetries). Highly interesting are the appearances of operators that send conservation laws and symmetries to each other but are neither Hamiltonian, nor symplectic. These operators give rise to a noncommutative infinite-dimensional algebra of recursion operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The D-boussinesq Equation: Hamiltonian and Symplectic Structures; Noether and Inverse Noether Operators

Using new methods of analysis of integrable systems,based on a general geometric approach to nonlinear PDE,we discuss the Dispersionless Boussinesq Equation, which is equivalent to the Benney-Lax equation,being a system of equations of hydrodynamical type. The results include: a description of local and nonlocal Hamiltonian and symplectic structures, hierarchies of symmetries, hierarchies of co...

متن کامل

Supersymmetric Representations and Integrable Fermionic Extensions of the Burgers and Boussinesq Equations

We construct new integrable coupled systems of N = 1 supersymmetric equations and present integrable fermionic extensions of the Burgers and Boussinesq equations. Existence of infinitely many higher symmetries is demonstrated by the presence of recursion operators. Various algebraic methods are applied to the analysis of symmetries, conservation laws, recursion operators, and Hamiltonian struct...

متن کامل

A modified homotopy perturbation method to periodic solution of a coupled integrable dispersionless equation

In this paper, a reliable approach is introduced to approximate periodic solutions of a system of coupled integrable dispersionless. The system is firstly, transformed into an ordinary differential equation by wave transformation. The solution of ODE is obtained by the homotopy perturbation method. To show the periodic behavior of the solution, a modification based on the Laplace transforms and...

متن کامل

NUMERICAL SOLUTION OF BOUSSINESQ EQUATION USING MODIFIED ADOMIAN DECOMPOSITION AND HOMOTOPY ANALYSIS METHODS

In this paper, a Boussinesq equation is solved by using the Adomian's decomposition method, modified Adomian's decomposition method and homotopy analysis method. The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relation. The existence and uniqueness of the solution and the convergence of the proposed methods ...

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005